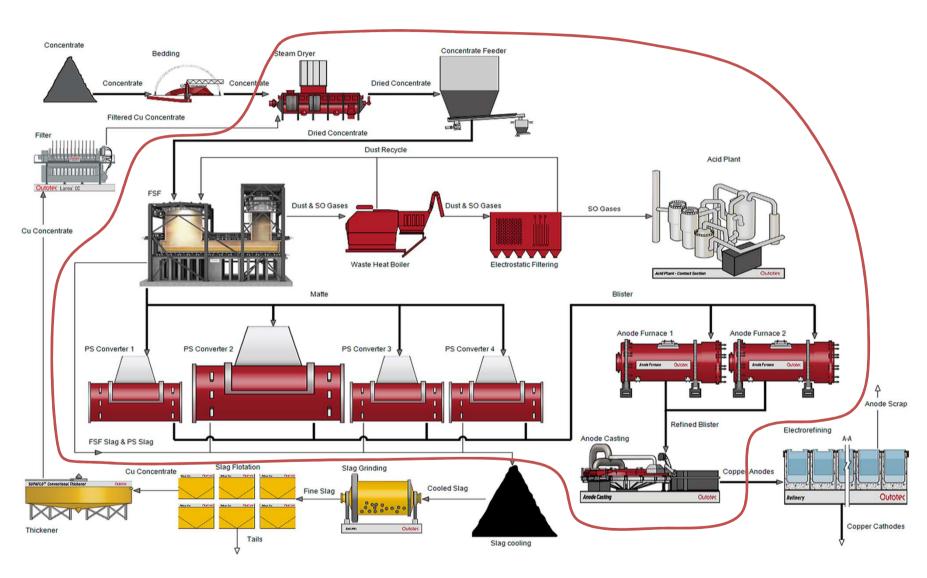


Optimization of Copper smelter

Mikko Korpi Outotec (March 2020)


Introduction

- Goal is to optimize production of (existing) smelter
 - > Tools to support operators in Process Control
 - ✓ Scheduling / Maximizing Feed against the current bottleneck
 - ✓ PSC Advisor / optimizing
 - ➤ Better overall result of whole smelter
 - ✓ Production rate
 - ✓ Recovery
 - ✓ Brick-lining life time
 - ✓ Emissions
 - > COCOP tools are giving information and advice
 - ✓ The operators still have the operating responsibility

The copper smelter layout and scope

The optimization challenges

TECHNICAL

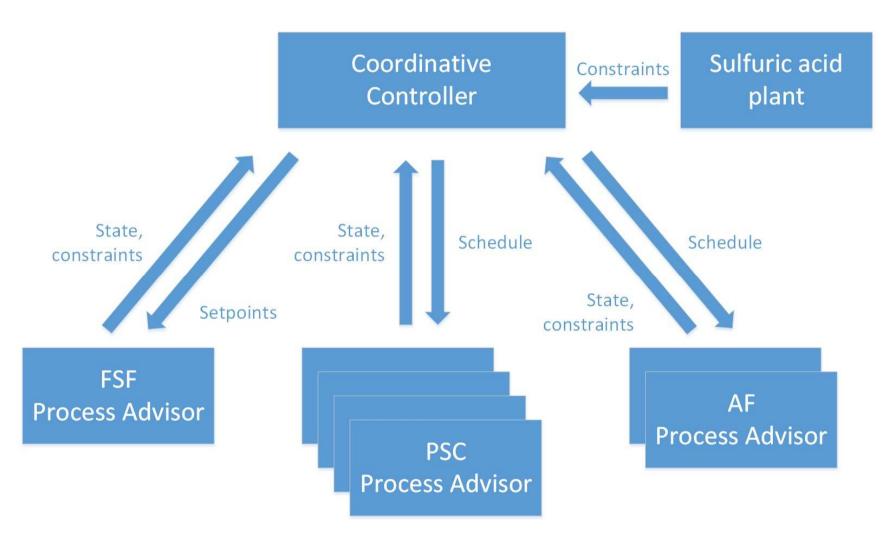
- The copper smelter includes batch and continuous processes in series that are affecting each other
- There are common restrictions for several unit process
- Each unit process has its own restrictions
- The feed mixture composition of FSF is subject to changes
- There are temporary restrictions due to breaks of equipment

HUMAN

- There is operator in the loop
 - FSF tapping, crane operations, PSC operations, AF operations
- Use of software must not cause extra work to operators
 - Calculating in the background utilizing process data and analysis automatically
 - Operators have to able to be set abnormal future restrictions easily
- The tool should give the results to operator in a visible and understandable way

General idea of solution

PLANT WIDE OPTIMIZATION

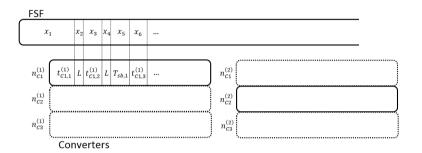

- Calculate schedule for future unit process operations
- Maximize the FSF feed rate against the bottleneck
- Optimize the target FSF matte grade

UNIT PROCESS OPTIMIZATION

- Develop unit process advisors
- Digital twin of unit process to be able to monitor the process
- Calculate control parameter suggestions to operator

Simplified software architecture

Scheduling



- Visualize to the future what, where and when are produced. For example:
 - Matte tappings
 - > PSC blowing times
 - > AF processing and anode casting
- The purpose is to give up-to-date forecast for different process sectors
- Maximize the FSF feed rate against bottleneck
 - > The bottleneck is not always easy to be seen
 - Enable to maintain the feed rate near the maximum

Scheduling algorithm

- Optimization problem formulated as a continuous time scheduling problem
 - Long time horizon and differing time scales in operation stages make discrete time formulations difficult
 - Mixed batch-continuous solution Production rate and timing of batch operating stages simultaneously considered

- Batches in general: start state -> processing -> end state
- Defined candidate structure for batch stages
 - ightharpoonup Load -> Slag blow -> Load -> etc for $n_{C1}^{(1)}$
 - \triangleright Different structure for $n_{C1}^{(2)}$
- Connect structure to continuous production
 - ho_{max} = max prod. rate -> produced amount x_j -> time length $t_{Ci,j}^{(k)}$

$$\rho_{max}^{-1} \mathbf{x}_j \le t_{Ci,j}^{(k)} \le \rho_{min}^{-1} \mathbf{x}_j$$

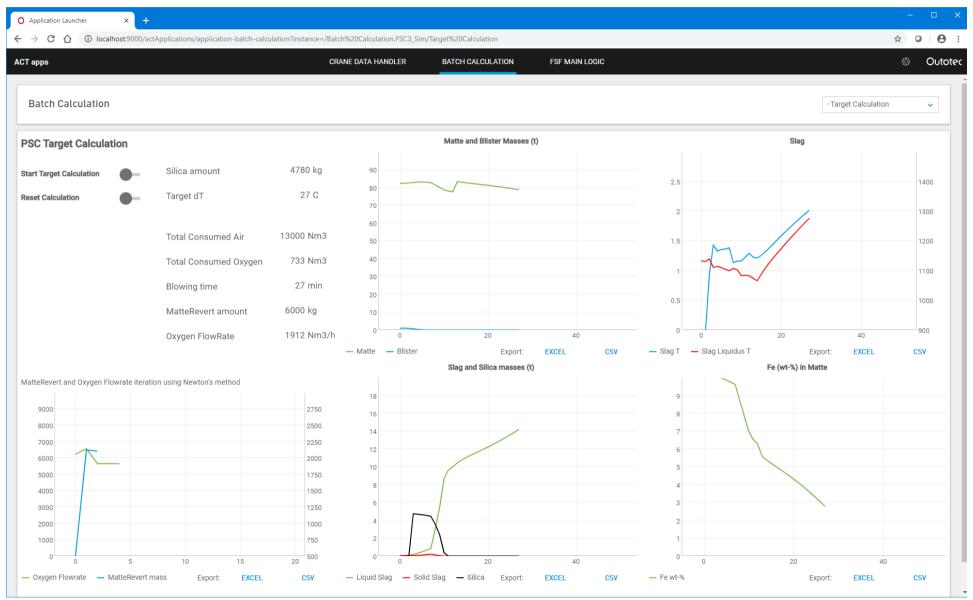
Prod. rate: Extent variables

Calculated scheduling results presented in web UI

PSC advisor

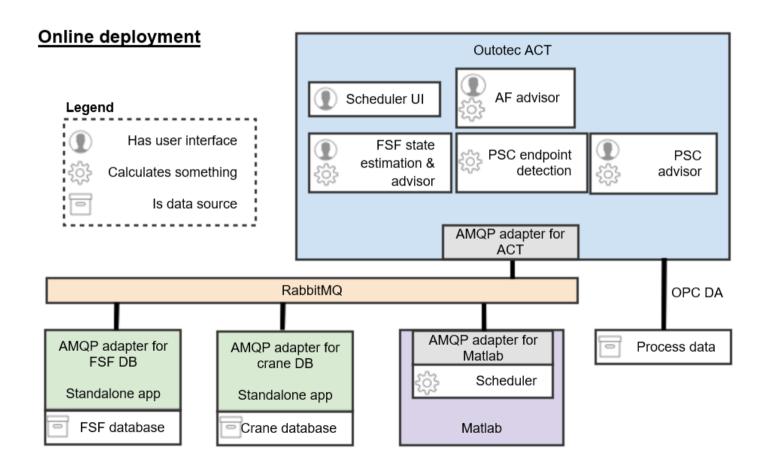
- The purpose is to help operators to improve PSC operations
- Calculate process state with thermodynamic model
- Visualize the results to the operators
 - ➤ Masses (matte, slag, blister)
 - > Temperature and slag liquidus temperature estimate
 - Compositions (Matte Fe-%, Slag Cu-% ja Fe/SiO2)
- Recalculate the PSC batch, if FSF matte state estimate changes
 - ➤ Kalman filter smoothing to calculate FSF matte composition and temperature for past matte ladles
- Calculate advise for next slag blowing step when new matte ladle arrives
 - Blowing time
 - > Silica Flux amount
 - > revert amount

PSC advisor UI


Simulated results presented in web UI

PSC advisor – UI page for future slag blow

Online testing in a copper smelter



- 2 weeks online test period
- Developers present at site:
 - > The developers made notes
 - ✓ How the system was accepted
 - ✓ If the system affected to the actual operation
 - > For verification and validation
 - > For impact evaluation and collecting KPI information

ICT architecture in online testing

 The system was implemented in two virtual computers in the network of the test smelter

Test period impact to process

- Scheduling tool had a small positive effect to FSF feed rate:
 - There was contribution only in situations when the feed rate was depending on downstream operations.
- PS Converting:
 - More mixed revert was added to the slag blow than normally
 - ➤ Also blowing times and silica flux amounts were better optimized
 - Operators followed simulated variables that can not be measured
 - ✓ There is a learning curve for the operators to utilize new information

Conclusion

- The COCOP Cu case tools were developed successfully
- Online testing was performed in a full scale smelter
 - ➤ Positive impact to desired variables
 - ✓ Production
 - ✓ Usage of circulated material
 - ✓ Emissions

Thank you for your attention!

www.cocop-spire.eu

@CocopSpire

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723661