

COCOP Copper Pilot Case Scheduling

Copper Production Process

Scope: From the flash smelting furnace to anode casting

Optimised operation of the flash smelting furnace, Peirce-Smith anode furnaces while considering the constraints imposed by the acid plant

Overall objectives:

- Increase the production rates in situations where abnormal operating conditions may restrict capacity
- · Provide advise to operators on current and upcoming operating stages
- Increase production stability through improved planning capabilities

Online Tests

- Tested in the real production environment with developers on-site for 2 weeks
- · The current production state was incorporated by connecting the system to Outotec ACT software through the message bus
- · Relevant scheduling situations occurred quite seldom. Improvements on the UI and usability are still needed

Continuous Time Solution

- · Mixed batch-continuous scheduling problem
- The continuous time MILP calculation can quickly provide optimised schedules when process conditions change
- 24 hour horizon with approximately 1000 variables, half integers 3500 constraints - Solved in 10 seconds
- The result can be further improved by a single batch optimisation

Bri

Discrete Time Solution

- A single batch discrete time -MILP problem is formulated to provide an optimum schedule with minimum copper losses.
- The coordinator provides an optimum schedule considering the flash smelting furnace and Peirce-Smith converters only.
- The coordinator uses heuristics to solve the infeasibilities that exist among those units.
- The computational requirement is higher as compared to continuous time approach.

Tampere University

tecnalia) Inspiring
Business