

COCOP in a Nutshell

Vision -

Complex process industry

plants will be optimally

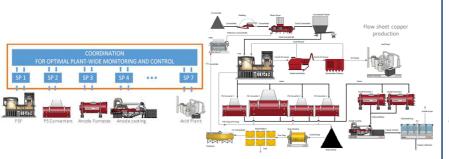
run by the operators with

the guidance of a

coordinating, real-time

optimisation system.

- Need


European Process industry faces a strong need to increase **product quality** and **reduce operating costs and** its **environmental footprint.** An industrial plant comprises continuous and/or batch unit processes, where the complexity stems from its dynamic properties, so a **plant-wide monitoring** and **control is needed.**

Goal_

To enable plant-wide monitoring and control by using the model-based, predictive, coordinating optimisation concept in integration with plant's automation systems

The Approach -

- COCOP concept integrates existing control systems with efficient data management and optimisation methods and provides means to monitor and control large industrial production processes
- COCOP is based on the decomposition-coordination optimisation of the plant operations: the overall problem is decomposed into unit-level sub-problems, and then, solutions of sub-problems are coordinated using high-level coordination to plant-wide optimal operation, enabling real-time optimisation of the plant

COCOP also combines the technological development with a social innovation process of co-creation and co-development for improving effectiveness and impact of the innovations and operator acceptance

WP1 Project Management Image: Construction of the sector of the sect

From the 1st October 2016 to 31th March 2020

- The Application

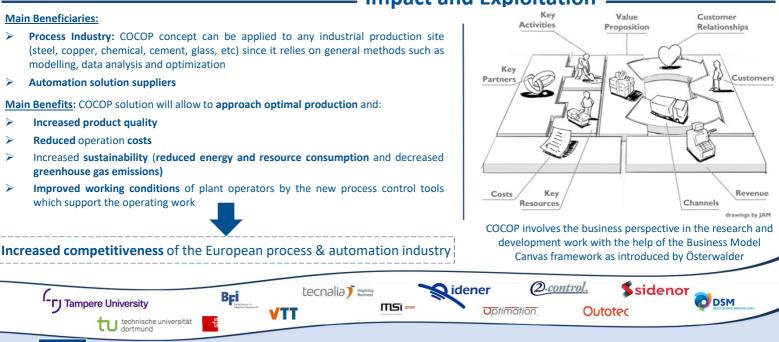
On-site application

Copper pilot case: to optimize scheduling of batch processes and develop advisory tools for main unit operations to increase production, improve copper recovery and reduce emissions

steels in as-rolled state

validation on two pilot cases

<u>Steel pilot case</u>: to develop a steel manufacturing plant-wide monitoring and advisory tool to reduce the surface and sub-surface defects in micro-alloyed


Transfer analysis to other two sectors

Chemical sector

Water treatment processing

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723661

www.cocop-spire.eu @CocopSpire Project Coordinator: Prof. Matti VILKKO (matti.vikko@tut.fi)

Impact and Exploitation _