

COCOP in a Nutshell

Vision -

Complex process industry

plants will be optimally

run by the operators with

the guidance of a

coordinating, real-time

optimisation system.

- Need

European Process industry faces a strong need to increase product quality and reduce operating costs and its environmental footprint. An industrial plant comprises continuous and/or batch unit processes, where the complexity stems from its dynamic properties, so a plant-wide monitoring and control is needed.

Goal

To enable plant-wide monitoring and control by using the model-based, predictive, coordinating optimisation concept in integration with plant's automation systems

The Approach

- COCOP concept integrates existing control systems with efficient data management and optimisation methods and provides means to monitor and control large industrial production processes
- COCOP is based on the decomposition-coordination optimisation of the plant operations: the overall problem is decomposed into unit-level sub-problems, and then, solutions of sub-problems are coordinated using high-level coordination to plant-wide optimal operation, enabling real-time optimisation of the plant

COCOP also combines the technological development with a social innovation process of co-creation and co-development for improving effectiveness and impact of the innovations and operator acceptance

(WP3 Architecture WP7 and Method and Concept Develop Use Cases (WP6 Verification and Va

From the 1st October 2016 to 31th March 2020

The Application

On-site application ጲ

Copper pilot case: to optimize scheduling of batch processes and develop advisory tools for main unit operations to increase production, improve copper recovery and reduce emissions

Steel pilot case: to develop a steel manufacturing plant-wide monitoring and advisory tool to reduce the surface and subsurface defects in micro-alloved steels in as-rolled state

Transfer analysis to other sectors

processing

Glass manufacturing

Impact and Exploitation

Main Beneficiaries:

- Process Industry: COCOP concept can be applied to any industrial production site (steel, copper, chemical, cement, glass, etc) since it relies on general methods such as modelling, data analysis and optimization
- Automation solution suppliers

Main Benefits: COCOP solution will allow to approach optimal production and:

- Increased product quality
- Reduced operation costs
- Increased sustainability (reduced energy and resource consumption and decreased greenhouse gas emissions)
- Improved working conditions of plant operators by the new process control tools which support the operating work

Increased competitiveness of the European process & automation industry

COCOP involves the business perspective in the research and development work with the help of the Business Model Canvas framework as introduced by Österwalder

	Bri		(@idener	Q-contro	. Ssid	enor
			O ptimati	ion	Outotec	DSM BEGIT SCIENCE BEGITERLAWIG
dortmund	to					

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 723661

www.cocop-spire.eu @CocopSpire

Project Coordinator: Prof. Matti VILKKO (matti.vikko@tut.fi)

Work Planning